Hypermathematics, Hv-Structures, Hypernumbers, Hypermatrices and Lie-Santilli Addmissibility
نویسندگان
چکیده
منابع مشابه
On the Lie-Santilli Admissibility
The largest class of hyperstructures is the one which satisfies the weak properties. We connect the theory of P-hopes, a large class of hyperoperations, with the Lie-Santilli admissibility used in Hardonic Mechanics. This can be achieved by a kind of Ree, sandwich hyperoperation.
متن کاملThe e-Theta Hopes
The largest class of hyperstructures is the Hv-structures, introduced in 1990, which proved to have a lot of applications in mathematics and several applied sciences, as well. Hyperstructures are used in the Lie-Santilli theory focusing to the hypernumbers, called e-numbers. We present the appropriate e-hyperstuctures which are defined using any map, in the sense the derivative map, called thet...
متن کاملLie-Santilli Admissibility using P-hyperoperations on matrices
We present a hyperproduct on non square matrices by using a generalization of the well known P-hopes. This theory is connected with the corresponding classical algebra, mainly with the theory of representations by (hyper) matrices. This can be achieved by using the fundamental relations defined on the hyperstructures.
متن کاملENLARGED FUNDAMENTALLY VERY THIN Hv-STRUCTURES
We study a new class of $H_v$-structures called Fundamentally Very Thin. This is an extension of the well known class of the Very Thin hyperstructures. We present applications of these hyperstructures.
متن کاملTensors and Hypermatrices
Lek-Heng Lim University of Chicago 15.1 Hypermatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-2 15.2 Tensors and Multilinear Functionals. . . . . . . . . . . . . . . . . 15-6 15.3 Tensor Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-12 15.4 Border Rank . . . . . . . . . . . . . . . . . . . . . . . ....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: American Journal of Modern Physics
سال: 2015
ISSN: 2326-8867
DOI: 10.11648/j.ajmp.s.2015040501.15